Quantitation of 4,4'-methylene diphenyl diisocyanate human serum albumin adducts

4,4'-亚甲基二苯基二异氰酸酯人血清白蛋白加合物的定量分析

阅读:4
作者:Leah G Luna, Brett J Green, Fagen Zhang, Scott M Arnold, Paul D Siegel, Michael J Bartels

Abstract

4,4'-Methylene diphenyl diisocyanate (herein 4,4'-MDI) is used in the production of polyurethane foams, elastomers, coatings, adhesives and the like for a wide range of commercial products. Occupational exposure to MDI levels above current airborne exposure limits can elicit immune mediated hypersensitivity reactions such as occupational asthma in sensitive individuals. To accurately determine exposure, there has been increasing interest in developing analytical methods to measure internal biomarkers of exposure to MDI. Previous investigators have reported methodologies for measuring MDI diamine metabolites and MDI-Lysine (4,4'-MDI-Lys) adducts. The purpose of this study was to develop and validate an ultra performance liquid chromatography isotope dilution tandem mass spectrometry (UPLC-ID/MS/MS) quantitation method via a signature peptide approach to enable biomonitoring of 4,4'-MDI adducted to human serum albumin (HSA) in plasma. A murine, anti-4,4'-MDI monoclonal IgM antibody was bound to magnetic beads and utilized for enrichment of the MDI adducted HSA. Following enrichment, trypsin digestion was performed to generate the expected 414 site (primary site of adduction) 4,4'-MDI-adducted HSA signature peptide that was quantified by UPLC-ID/MS/MS. An Agilent 6530 UPLC/quadrupole time of flight MS (QTOF) system was utilized for intact adducted protein analysis and an Agilent 6490 UPLC/MS/MS system operated in multiple reaction monitoring (MRM) mode was utilized for quantification of the adducted signature peptide biomarker both for in chemico and worker serum samples. Worker serum samples were initially screened utilizing the previously developed 4,4'-MDI-Lys amino acid method and results showed that 12 samples were identified as quantifiable for 4,4'-MDI-Lys adducts. The signature peptide adduct approach was applied to the 12 worker samples identified as quantifiable for 4,4'-MDI-Lys adducts. Results indicated no positive results were obtained above the quantification limit by the signature peptide approach. If the 414 site of lysine adduction accounted for 100% of the 4,4'-MDI adductions in the signature peptide adduct approach, the three highest quantifiable samples by the 4,4'-MDI-Lys method should have at least been detectable by the signature peptide method. Results show that although the 4,4'-MDI signature peptide approach is more selective, it is 18 times less sensitive than the 4,4'-MDI-Lys method, thus limiting the ability to detect adduct levels relative to the 4,4'-MDI-Lys amino acid method.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。