Melatonin ameliorates myocardial injury by reducing apoptosis and autophagy of cardiomyocytes in a rat cardiopulmonary bypass model

褪黑素通过减少大鼠心肺旁路模型中的心肌细胞凋亡和自噬改善心肌损伤

阅读:4
作者:Xiaolin Huang #, Jian Hou #, Suiqing Huang, Kangni Feng, Yuan Yue, Huayang Li, Shaojie Huang, Mengya Liang, Guangxian Chen, Zhongkai Wu

Background

Myocardial injury is a frequent complication after cardiac surgery with cardiopulmonary bypass (CPB). This study aimed to test the hypothesis that melatonin could attenuate myocardial injury in a rat CPB model.

Conclusion

Melatonin may serve as a cardioprotective factor in CPB by inhibiting oxidative damage, apoptosis and autophagy. The AKT, STAT3 and mTOR signaling pathways were involved in this process.

Methods

Eighteen male Sprague-Dawley rats were randomly divided into three groups, n = 6 for each group: the sham operation (SO) group, CPB group and melatonin group. Rats in the SO group underwent cannulation without CPB, rats in CPB group intraperitoneal injected an equal volume of vehicle daily for 7 days before being subjected to CPB and rats in melatonin group intraperitoneal injected 20 mg/kg of melatonin solution daily for 7 days before being subjected to CPB. After 120 min for CPB, the expression levels of plasma interleukin (IL) -6, IL-1β, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), creatine kinase (CK) -MB and cardiac troponin T (cTnT) were measured. Reactive oxygen species (ROS) were detected by dihydroethidium (DHE). Apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. Mitochondrial damage and autophagosomes were detected by electron microscopy. Apoptosis inducing factor (AIF) was detected by immunofluorescence. The expression of B cell lymphoma/leukemia2 associated X (Bax), B cell lymphoma/leukemia 2 (Bcl-2), cytochrome C (Cyto-C), cleaved caspase-9, AKT, p-AKT, signal transducer and activator of transcription 3 (STAT3), p-STAT3, LC3, P62, mechanistic target of rapamycin kinase (mTOR), p-mTOR and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were determined using western blotting.

Results

Melatonin significantly decreased the levels of IL-1β, IL-6, MDA, CK-MB and cTnT and increased the levels of SOD and GSH-Px, all of which were altered by CPB. Melatonin reduced cardiomyocyte superoxide production, the apoptosis index and autophagy in cardiomyocytes induced by CPB. The AKT, STAT3 and mTOR signaling pathways were activated by melatonin during CPB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。