Hypoxia-induced cysteine metabolism reprogramming is crucial for the tumorigenesis of colorectal cancer

缺氧诱导的半胱氨酸代谢重编程对结直肠癌的肿瘤发生至关重要

阅读:5
作者:Zhang Lin, Shiyi Yang, Qianqian Qiu, Gaoping Cui, Yanhua Zhang, Meilian Yao, Xiangyu Li, Chengkun Chen, Jun Gu, Ting Wang, Peng Yin, Longci Sun, Yujun Hao

Abstract

Metabolic reprogramming is a hallmark of human cancer, and cancer-specific metabolism provides opportunities for cancer diagnosis, prognosis, and treatment. However, the underlying mechanisms by which metabolic pathways affect the initiation and progression of colorectal cancer (CRC) remain largely unknown. Here, we demonstrate that cysteine is highly enriched in colorectal tumors compared to adjacent non-tumor tissues, thereby promoting tumorigenesis of CRC. Synchronously importing both cysteine and cystine in colorectal cancer cells is necessary to maintain intracellular cysteine levels. Hypoxia-induced reactive oxygen species (ROS) and ER stress regulate the co-upregulation of genes encoding cystine transporters (SLC7A11, SLC3A2) and genes encoding cysteine transporters (SLC1A4, SLC1A5) through the transcription factor ATF4. Furthermore, the metabolic flux from cysteine to reduced glutathione (GSH), which is critical to support CRC growth, is increased due to overexpression of glutathione synthetase GSS in CRC. Depletion of cystine/cysteine by recombinant cyst(e)inase effectively inhibits the growth of colorectal tumors by inducing autophagy in colorectal cancer cells through mTOR-ULK signaling axis. This study demonstrates the underlying mechanisms of cysteine metabolism in tumorigenesis of CRC, and evaluates the potential of cysteine metabolism as a biomarker or a therapeutic target for CRC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。