The neuronal K+Cl- co-transporter 2 (Slc12a5) modulates insulin secretion

神经元 K+Cl- 共转运体 2 (Slc12a5) 调节胰岛素分泌

阅读:7
作者:Shams Kursan, Timothy S McMillen, Pavani Beesetty, Eduardo Dias-Junior, Mohammed M Almutairi, Abu A Sajib, J Ashot Kozak, Lydia Aguilar-Bryan, Mauricio Di Fulvio

Abstract

Intracellular chloride concentration ([Cl-]i) in pancreatic β-cells is kept above electrochemical equilibrium due to the predominant functional presence of Cl- loaders such as the Na+K+2Cl- co-transporter 1 (Slc12a2) over Cl-extruders of unidentified nature. Using molecular cloning, RT-PCR, Western blotting, immunolocalization and in vitro functional assays, we establish that the "neuron-specific" K+Cl- co-transporter 2 (KCC2, Slc12a5) is expressed in several endocrine cells of the pancreatic islet, including glucagon secreting α-cells, but particularly in insulin-secreting β-cells, where we provide evidence for its role in the insulin secretory response. Three KCC2 splice variants were identified: the formerly described KCC2a and KCC2b along with a novel one lacking exon 25 (KCC2a-S25). This new variant is undetectable in brain or spinal cord, the only and most abundant known sources of KCC2. Inhibition of KCC2 activity in clonal MIN6 β-cells increases basal and glucose-stimulated insulin secretion and Ca2+ uptake in the presence of glibenclamide, an inhibitor of the ATP-dependent potassium (KATP)-channels, thus suggesting a possible mechanism underlying KCC2-dependent insulin release. We propose that the long-time considered "neuron-specific" KCC2 co-transporter is expressed in pancreatic islet β-cells where it modulates Ca2+-dependent insulin secretion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。