Sulfate radical anion as a new reagent for fast photochemical oxidation of proteins

硫酸根自由基阴离子作为快速光化学氧化蛋白质的新试剂

阅读:4
作者:Brian C Gau, Hao Chen, Yun Zhang, Michael L Gross

Abstract

The focus is to expand the original design of fast photochemical oxidation of proteins (FPOP) and introduce SO(4)(-•), generated by 248 nm homolysis of low millimolar levels of persulfate, as a radical reactant in protein footprinting. FPOP is a chemical approach to footprinting proteins and protein complexes by "snapshot" reaction with free radicals. The radical used until now is the OH radical, and it provides a measure of residue-resolved solvent accessibility of the native protein. We show that FPOP can accommodate other reagents, increasing its versatility. The new persulfate FPOP system is a potent, nonspecific, and tunable footprinting method; 3-5 times less persulfate is needed to give the same global levels of modification as seen with OH radicals. Although solvent-exposed His and Tyr residues are more reactive with SO(4)(-•) than with (•)OH, oxidation of apomyoglobin and calmodulin shows that (•)OH probes smaller accessible areas than SO(4)(-•), with the possible exception of histidine. His64, an axial ligand in the heme-binding pocket of apomyoglobin, is substantially up-labeled by SO(4)(-•) relative to (•)OH. Nevertheless, the kinds of modification and residue selectivity for both reagent radicals are strikingly similar. Thus, the choice of these reagents relies on the physical properties, particularly the membrane permeability, of the radical precursors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。