Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2

甘草酸对 SARS-CoV-2 的刺突蛋白具有抑制作用

阅读:5
作者:Shaopeng Yu, Yuying Zhu, Jiaruo Xu, Guangtao Yao, Pei Zhang, Mengge Wang, Yongfang Zhao, Guoqiang Lin, Hongzhuan Chen, Lili Chen, Jiange Zhang

Abstract

Coronavirus causes a disease with high infectivity and pathogenicity, especially SARS in 2003, MERS in 2012, and COVID-2019 currently. The spike proteins of these coronaviruses are critical for host cell entry by receptors. Thus, searching for broad-spectrum anti-coronavirus candidates, such as spike protein inhibitors, is vital and desirable due to the mutations in the spike protein. In this study, a combination of computer-aided drug design and biological verification was used to discover active monomers from traditional Chinese medicine. Surface plasmon resonance (SPR) assays and NanoBit assays were used to verify the predicated compounds with their binding activities to spike proteins and inhibitory activities on the SARS-CoV-2 RBD/ACE2 interaction, respectively. Furthermore, an MTT assay was used to evaluate the cell toxicities of active compounds. As a result, glycyrrhizic acid (ZZY-44) was found to be the most efficient and nontoxic broad-spectrum anti-coronavirus molecule in vitro, especially, the significant effect on SARS-CoV-2, which provided a theoretical basis for the study of the pharmacodynamic material basis of traditional Chinese medicine against SARS-CoV-2 and offered a lead compound for further structural modification in order to obtain more effective candidate drugs against SARS-CoV-2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。