Induced responses to the wheat pathogen: Tan Spot-(Pyrenophora tritici-repentis) in wheat (Triticum aestivum) focus on changes in defence associated and sugar metabolism

对小麦病原体的诱导反应:小麦(Triticum aestivum)中的褐斑病(Pyrenophora tritici-repentis)主要关注防御相关变化和糖代谢

阅读:14
作者:Larissa Carvalho Ferreira, Flavio Martins Santana, Sandra Maria Mansur Scagliusi, Manfred Beckmann, Luis A J Mur

Conclusion

These observations suggest the potential importance of flavone and flavonol biosynthesis as well as bioenergetic shifts in susceptibility to Ptr. This work highlights the value of metabolomic approaches to provide novel insights into wheat pathosystems.

Methods

PF and FH plants were inoculated with a Ptr strain that produces the necrotrophic toxin ToxA. The metabolic changes in flag leaves following challenge (24, 48, 72, and 96 h post-inoculation [hpi]) with Ptr were investigated using untargeted flow infusion ionisation-high resolution mass spectroscopy (FIE-HRMS).

Results

Both cultivars were susceptible to Ptr at the flag-leaf stage. Comparisons of Ptr- and mock-inoculated plants indicated that a major metabolic shift occurred at 24 hpi in FH, and at 48 hpi in PF. Although most altered metabolites were genotype specific, they were linked to common pathways; phenylpropanoid and flavonoid metabolism. Alterations in sugar metabolism as well as in glycolysis and glucogenesis pathways were also observed. Pathway enrichment analysis suggested that Ptr-triggered alterations in chloroplast and photosynthetic machinery in both cultivars, especially in FH at 96 hpi. In a wheat-Ptr interactome in integrative network analysis, "flavone and flavonol biosynthesis" and "starch and sucrose metabolism" were targeted as the key metabolic processes underlying PF-FH-Ptr interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。