D4F alleviates macrophage-derived foam cell apoptosis by inhibiting CD36 expression and ER stress-CHOP pathway

D4F通过抑制CD36表达和ER应激-CHOP通路减轻巨噬细胞衍生的泡沫细胞凋亡

阅读:6
作者:Shutong Yao, Hua Tian, Cheng Miao, Da-Wei Zhang, Li Zhao, Yanyan Li, Nana Yang, Peng Jiao, Hui Sang, Shoudong Guo, Yiwei Wang, Shucun Qin

Abstract

This study was designed to explore the protective effect of D4F, an apoA-I mimetic peptide, on oxidized LDL (ox-LDL)-induced endoplasmic reticulum (ER) stress-CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) pathway-mediated apoptosis in macrophages. Our results showed that treating apoE knockout mice with D4F decreased the serum ox-LDL level and apoptosis in atherosclerotic lesions with concomitant downregulation of cluster of differentiation 36 (CD36) and inhibition of ER stress. In vitro, D4F inhibited macrophage-derived foam cell formation. Furthermore, like ER stress inhibitor 4-phenylbutyric acid (PBA), D4F inhibited ox-LDL- or tunicamycin (TM, an ER stress inducer)-induced reduction in cell viability and increase in lactate dehydrogenase leakage, caspase-3 activation, and apoptosis. Additionally, like PBA, D4F inhibited ox-LDL- or TM-induced activation of ER stress response as assessed by the reduced nuclear translocation of activating transcription factor 6 and the decreased phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α, as well as the downregulation of glucose-regulated protein 78 and CHOP. Moreover, D4F mitigated ox-LDL uptake by macrophages and CD36 upregulation induced by ox-LDL or TM. These data indicate that D4F can alleviate the formation and apoptosis of macrophage-derived foam cells by suppressing CD36-mediated ox-LDL uptake and subsequent activation of the ER stress-CHOP pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。