Arrhythmogenic calmodulin mutations disrupt intracellular cardiomyocyte Ca2+ regulation by distinct mechanisms

心律失常性钙调蛋白突变通过不同的机制破坏心肌细胞内 Ca2+ 调节

阅读:6
作者:Guo Yin, Faisal Hassan, Ayman R Haroun, Lisa L Murphy, Lia Crotti, Peter J Schwartz, Alfred L George, Jonathan Satin

Background

Calmodulin (CaM) mutations have been identified recently in subjects with congenital long QT syndrome (LQTS) or catecholaminergic polymorphic ventricular tachycardia (CPVT), but the mechanisms responsible for these divergent arrhythmia-susceptibility syndromes in this context are unknown. We tested the hypothesis that LQTS-associated CaM mutants disrupt Ca2+ homeostasis in developing cardiomyocytes possibly by affecting either late Na current or Ca2+-dependent inactivation of L-type Ca2+ current.

Conclusions

CaM mutations associated with LQTS may not affect L-type Na+ current but may evoke defective Ca2+-dependent inactivation of L-type Ca2+ current.

Results

We coexpressed CaM mutants with the human cardiac Na channel (NaV1.5) in tsA201 cells, and we used mammalian fetal ventricular cardiomyocytes to investigate LQTS- and CPVT-associated CaM mutations (LQTS- and CPVT-CaM). LQTS-CaM mutants do not consistently affect L-type Na current in heterologous cells or native cardiomyocytes, suggesting that the Na channel does not contribute to LQTS pathogenesis in the context of CaM mutations. LQTS-CaM mutants (D96V, D130G, F142L) impaired Ca2+-dependent inactivation, whereas the CPVT-CaM mutant N54I had no effect on Ca2+-dependent inactivation. LQTS-CaM mutants led to loss of Ca2+-transient entrainment with the rank order from greatest to least effect: CaM-D130G~CaM-D96V>>CaM-F142L. This rank order follows measured Ca2+-CaM affinities for wild-type and mutant CaM. Acute isoproterenol restored entrainment for CaM-130G and CaM-D96V but caused irreversible cytosolic Ca2+ overload for cells expressing a CPVT-CaM mutant. Conclusions: CaM mutations associated with LQTS may not affect L-type Na+ current but may evoke defective Ca2+-dependent inactivation of L-type Ca2+ current.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。