Coimmobilization of dehydrogenases and their cofactors in electrochemical biosensors

脱氢酶及其辅因子在电化学生物传感器中的共固定化

阅读:7
作者:Maogen Zhang, Conor Mullens, Waldemar Gorski

Abstract

Enzyme-based reagentless biosensors were developed using the model system of glucose dehydrogenase (GDH) and its nicotinamide adenine dinucleotide cofactor (NAD+). The biosensors were prepared following an approach similar to the concept of molecular imprinting. To this end, the N1-carboxymethyl-NAD+ species were covalently attached to polyamino-saccharide chains of chitosan (CHIT) and allowed to interact with GDH in an aqueous solution. The bioaffinity interactions between the NAD+ and GDH were secured by cross-linking the system with the glutaric dialdehyde (GDI)-modified CHIT. Electron conductive films of such CHIT-NAD+-GDH-GDI-CHIT macrocomplexes (MC) were prepared on glassy carbon (GC) electrodes by adding carbon nanotubes (CNT) and evaporating water. Electrochemical analysis of the GC/CNT-MC electrodes revealed that, in contrast to the oxidase-based electrodes, they acted as oxygen-independent reagentless biosensors. The application of Nafion to such biosensors predictably improved their selectivity and, unexpectedly, enhanced their sensitivity by an order of magnitude.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。