Morphological and functional decline of the SNc in a model of progressive parkinsonism

进行性帕金森病模型中 SNc 的形态和功能衰退

阅读:9
作者:Jacob M Muñoz, John T Williams, Joseph J Lebowitz

Abstract

The motor symptoms of Parkinson's Disease are attributed to the degeneration of dopamine neurons in the substantia nigra pars compacta (SNc). Previous work in the MCI-Park mouse model has suggested that the loss of somatodendritic dopamine transmission predicts the development of motor deficits. In the current study, brain slices from MCI-Park mice were used to investigate dopamine signaling in the SNc prior to and through the onset of movement deficits. Electrophysiological properties were impaired by p30 and somatic volume was decreased at all time points. The D2 receptor activated potassium current evoked by quinpirole was present initially, but declined after p30. In contrast, D2-IPSCs were absent at all time points. The decrease in GPCR-mediated inhibition was met with increased spontaneous GABAA signaling. Dendro-dendritic synapses are identified as an early locus of dysfunction in response to bioenergetic decline and suggest that dendritic release sites may contribute to the induction of degeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。