pRb-Independent growth arrest and transcriptional regulation of E2F target genes

pRb 独立的生长停滞和 E2F 靶基因的转录调控

阅读:7
作者:Michael T McCabe, Odinaka J Azih, Mark L Day

Abstract

The retinoblastoma tumor suppressor (pRb) has traditionally been studied as a negative regulator of cell cycle progression through its interactions with the E2F family of transcription factors. Utilizing prostate epithelial cell lines established from Rb+/+ and Rb-/- prostate tissues, we previously demonstrated that Rb-/- epithelial cells were not transformed and retained the ability to differentiate in vivo despite the lack of pRb. To further study the effects of pRb loss in an epithelial cell population, we utilized oligonucleotide microarrays to identify any pRb-dependent transcriptional regulation during serum depletion-induced growth arrest. These studies identified 120 unique transcripts regulated by growth arrest in Rb+/+ cells. In these wild-type cells, the majority (80%) of altered transcripts were downregulated, including 40 previously identified E2F target genes. Although the transcriptional repression of E2F target genes is characteristic of pRb pocket protein family activity, further analysis revealed that, compared to Rb+/+ cells, Rb-/- cells exhibited a nearly identical response for all transcripts including those of E2F target genes. These findings demonstrate that pRb is not strictly required for the vast majority of transcriptional alterations associated with growth arrest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。