Iron accumulation in ovarian microenvironment damages the local redox balance and oocyte quality in aging mice

卵巢微环境中铁积累损害衰老小鼠的局部氧化还原平衡和卵母细胞质量

阅读:4
作者:Ye Chen, Jiaqi Zhang, Ying Tian, Xiangning Xu, Bicheng Wang, Ziqi Huang, Shuo Lou, Jingyi Kang, Ningning Zhang, Jing Weng, Yuanjing Liang, Wei Ma

Abstract

Accumulating oxidative damage is a primary driver of ovarian reserve decline along with aging. However, the mechanism behind the imbalance in reactive oxygen species (ROS) is not yet fully understood. Here we investigated changes in iron metabolism and its relationship with ROS disorder in aging ovaries of mice. We found increased iron content in aging ovaries and oocytes, along with abnormal expression of iron metabolic proteins, including heme oxygenase 1 (HO-1), ferritin heavy chain (FTH), ferritin light chain (FTL), mitochondrial ferritin (FTMT), divalent metal transporter 1 (DMT1), ferroportin1(FPN1), iron regulatory proteins (IRP1 and IRP2) and transferrin receptor 1 (TFR1). Notably, aging oocytes exhibited enhanced ferritinophagy and mitophagy, and consistently, there was an increase in cytosolic Fe2+, elevated lipid peroxidation, mitochondrial dysfunction, and augmented lysosome activity. Additionally, the ovarian expression of p53, p21, p16 and microtubule-associated protein tau (Tau) were also found to be upregulated. These alterations could be phenocopied with in vitro Fe2+ administration in oocytes from 2-month-old mice but were alleviated by deferoxamine (DFO). In vivo application of DFO improved ovarian iron metabolism and redox status in 12-month-old mice, and corrected the alterations in cytosolic Fe2+, ferritinophagy and mitophagy, as well as related degenerative changes in oocytes. Thereby in the whole, DFO delayed the decline in ovarian reserve and significantly increased the number of superovulated oocytes with reduced fragmentation and aneuploidy. Together, our findings suggest that aging-related disturbance in ovarian iron homeostasis contributes to excessive ROS production and that iron chelation may improve ovarian redox status, and efficiently delay the decline in ovarian reserve and oocyte quality in aging mice. These data propose a novel intervention strategy for preserving the ovarian reserve function in elderly women.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。