Stable isotope dilution mass spectrometry quantification of hydrogen sulfide and thiols in biological matrices

稳定同位素稀释质谱法定量分析生物基质中的硫化氢和硫醇

阅读:10
作者:Hind Malaeb, Ibrahim Choucair, Zeneng Wang, Xinmin S Li, Lin Li, W Christopher Boyd, Christopher Hine, W H Wilson Tang, Valentin Gogonea, Stanley L Hazen

Background

Hydrogen sulfide (H2S), a gaseous signaling molecule that impacts multiple physiological processes including aging, is produced via select mammalian enzymes and enteric sulfur-reducing bacteria. H2S research is limited by the lack of an accurate internal standard-containing assay for its quantitation in biological matrices.

Conclusions

A stable-isotope-dilution LC-MS/MS method is presented for the simultaneous quantification of Total H2S and multiple thiols in biological matrices. We then use this assay panel to show a striking age-related decline and gut microbiota contribution to circulating Total H2S levels in humans.

Methods

After synthesizing [34S]H2S and developing sample preparation protocols that avoid sulfide contamination with the addition of thiol-containing standards or reducing reagents, we developed a stable isotope-dilution high performance liquid chromatography tandem-mass spectrometry (LC-MS/MS) method for the simultaneous quantification of Total H2S and other abundant thiols (cysteine, homocysteine, glutathione, glutamylcysteine, cysteinylglycine) in biological matrices, conducted a 20-day analytical validation/normal range study, and then both analyzed circulating Total H2S and thiols in plasma from 400 subjects, and within 20 volunteers before and after antibiotic-induced suppression of gut microbiota.

Results

Using the new assay, all analytes showed minimal interference, no carryover, and excellent intra- and inter-day reproducibility (≤7.6%, and ≤12.7%, respectively), linearity (r2 > 0.997), recovery (90.9%-110%) and stability (90.0%-100.5%). Only circulating Total H2S levels showed significant age-associated reductions in both males and females (p < 0.001), and a marked reduction following gut microbiota suppression (mean 33.8 ± 17.7%, p < 0.001), with large variations in gut microbiota contribution among subjects (range 6.0-66.7% reduction with antibiotics). Conclusions: A stable-isotope-dilution LC-MS/MS method is presented for the simultaneous quantification of Total H2S and multiple thiols in biological matrices. We then use this assay panel to show a striking age-related decline and gut microbiota contribution to circulating Total H2S levels in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。