Novel tetrahydroacridine derivatives with iodobenzoic moieties induce G0/G1 cell cycle arrest and apoptosis in A549 non-small lung cancer and HT-29 colorectal cancer cells

具有碘苯甲酸部分的新型四氢吖啶衍生物可诱导 A549 非小细胞肺癌和 HT-29 结直肠癌细胞的 G0/G1 细胞周期停滞和细胞凋亡

阅读:5
作者:Małgorzata Girek, Karol Kłosiński, Bartłomiej Grobelski, Stefania Pizzimenti, Marie Angele Cucci, Martina Daga, Giuseppina Barrera, Zbigniew Pasieka, Kamila Czarnecka, Paweł Szymański

Abstract

A series of nine tetrahydroacridine derivatives with iodobenzoic moiety were synthesized and evaluated for their cytotoxic activity against cancer cell lines-A549 (human lung adenocarcinoma), HT-29 (human colorectal adenocarcinoma) and somatic cell line-EA.hy926 (human umbilical vein cell line). All compounds displayed high cytotoxicity activity against A549 (IC50 59.12-14.87 µM) and HT-29 (IC50 17.32-5.90 µM) cell lines, higher than control agents-etoposide and 5-fluorouracil. Structure-activity relationship showed that the position of iodine in the substituent in the para position and longer linker most strongly enhanced the cytotoxic effect. Among derivatives, 1i turned out to be the most cytotoxic and displayed IC50 values of 14.87 µM against A549 and 5.90 µM against HT-29 cell lines. In hyaluronidase inhibition assay, all compounds presented anti-inflammatory activity, however, slightly lower than reference compound. ADMET prediction showed that almost all compounds had good pharmacokinetic profiles. 1b, 1c and 1f compounds turned out to act against chemoresistance in cisplatin-resistant 253J B-V cells. Compounds intercalated into DNA and inhibited cell cycle in G0/G1 phase-the strongest inhibition was observed for 1i in A549 and 1c in HT-29. Among compounds, the highest apoptotic effect in both cell lines was observed after treatment with 1i. Compounds caused DNA damage and H2AX phosphorylation, which was detected in A549 and HT-29 cells. All research confirmed anticancer properties of novel tetrahydroacridine derivatives and explained a few pathways of their mechanism of cytotoxic action.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。