Identification and functional activity of matrix-remodeling associated 5 (MXRA5) in benign hyperplastic prostate

良性增生性前列腺中基质重塑相关 5 (MXRA5) 的鉴定和功能活性

阅读:5
作者:He Xiao, Ye Jiang, Weixiang He, Deqiang Xu, Ping Chen, Daoquan Liu, Jianmin Liu, Xinghuan Wang, Michael E DiSanto, Xinhua Zhang

Conclusion

Our novel data demonstrates that upregulation of MXRA5 in the enlarged prostate could contribute to the development of BPH through increasing cell proliferation via the MAPK pathway. Thus, the MXRA5-MAPK system could be rediscovered as a new therapeutic target for treating BPH. Methods: Microarray analysis and integrated bioinformatics were conducted. The expression and biologic functions of MXRA5 was investigated via RT-PCR, western-blot, immunofluorescence, flow cytometry and MTT assay. Finally, genes involved in regulation of the MAPK pathway were investigated.

Methods

Microarray analysis and integrated bioinformatics were conducted. The expression and biologic functions of MXRA5 was investigated via RT-PCR, western-blot, immunofluorescence, flow cytometry and MTT assay. Finally, genes involved in regulation of the MAPK pathway were investigated.

Objective

Benign prostatic hyperplasia (BPH) is a common condition in aging males. The current study aims to identify differentially expressed genes (DEGs) associated with BPH and to elucidate the role of matrix-remodeling associated 5 (MXRA5) protein and mitogen-activated protein kinase (MAPK) signaling pathways in BPH.

Results

A total of 198 DEGs and a number of related pathways were identified with MXRA5 being one of the most significantly altered DEGs. MXRA5 was upregulated in BPH samples and localized mostly in stroma. Knockdown of MXRA5 induced stromal cell cycle arrest instead of inhibiting apoptosis. Consistently, MXRA5 overexpression enhanced epithelial cell proliferation. In addition, phosphorylated ERK1/2 and p38, key members of the MAPK family, were strongly decreased with knockdown but increased with overexpression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。