Labelfree mapping and profiling of altered lipid homeostasis in the rat hippocampus after traumatic stress: Role of oxidative homeostasis

创伤应激后大鼠海马脂质稳态改变的无标记映射和分析:氧化稳态的作用

阅读:4
作者:D Parker Kelley, Ardalan Chaichi, Alexander Duplooy, Dhirendra Singh, Manas Ranjan Gartia, Joseph Francis

Abstract

Oxidative and lipid homeostasis are altered by stress and trauma and post-traumatic stress disorder (PTSD) is associated with alterations to lipid species in plasma. Stress-induced alterations to lipid oxidative and homeostasis may exacerbate PTSD pathology, but few preclinical investigations of stress-induced lipidomic changes in the brain exist. Currently available techniques for the quantification of lipid species in biological samples require tissue extraction and are limited in their ability to retrieve spatial information. Raman imaging can overcome this limitation through the quantification of lipid species in situ in minimally processed tissue slices. Here, we utilized a predator exposure and psychosocial stress (PE/PSS) model of traumatic stress to standardize Raman imaging of lipid species in the hippocampus using LC-MS based lipidomics and these data were confirmed with qRT-PCR measures of mRNA expression of relevant enzymes and transporters. Electron Paramagnetic Resonance Spectroscopy (EPR) was used to measure free radical production and an MDA assay to measure oxidized polyunsaturated fatty acids. We observed that PE/PSS is associated with increased cholesterol, altered lipid concentrations, increased free radical production and reduced oxidized polyunsaturated fats (PUFAs) in the hippocampus (HPC), indicating shifts in lipid and oxidative homeostasis in the HPC after traumatic stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。