Averting H+-Mediated Charge Storage Chemistry Stabilizes the High Output Voltage of LiMn2O4-Based Aqueous Battery

避免 H+ 介导的电荷存储化学反应可稳定基于 LiMn2O4 的水系电池的高输出电压

阅读:6
作者:Abhirup Bhadra, S Swathilakshmi, Uttam Mittal, Neeraj Sharma, Gopalakrishnan Sai Gautam, Dipan Kundu

Abstract

H+ co-intercalation chemistry of the cathode is perceived to have damaging consequences on the low-rate and long-term cycling of aqueous zinc batteries, which is a critical hindrance to their promise for stationary storage applications. Herein, the thermodynamically competitive H+ storage chemistry of an attractive high-voltage cathode LiMn2O4 is revealed by employing operando and ex-situ analytical techniques together with density functional theory-based calculations. The H+ electrochemistry leads to the previously unforeseen voltage decay with cycling, impacting the available energy density, particularly at lower currents. Based on an in-depth investigation of the effect of the Li+ to Zn2+ ratio in the electrolyte on the charge storage mechanism, a purely aqueous and low-salt concentration electrolyte with a tuned Li+/Zn2+ ratio is introduced to subdue the H+-mediated charge storage kinetically, resulting in a stable voltage output and improved cycling stability at both low and high cathode loadings. Synchrotron X-ray diffraction analysis reveals that repeated H+ intercalation triggers an irreversible phase transformation leading to voltage decay, which is averted by shutting down H+ storage. These findings unveiling the origin and impact of the deleterious H+-storage, coupled with the practical strategy for its inhibition, will inspire further work toward this under-explored realm of aqueous battery chemistry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。