Identification and Molecular Characterization of Peroxisome Proliferator-Activated Receptor δ as a Novel Target for Covalent Modification by 15-Deoxy-Δ12,14-prostaglandin J2

过氧化物酶体增殖激活受体δ的鉴定和分子表征作为15-脱氧-Δ12,14-前列腺素J2共价修饰的新靶点

阅读:4
作者:Aravind T Reddy, Sowmya P Lakshmi, Asoka Banno, Raju C Reddy

Abstract

PPARδ belongs to the peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors. Upon activation by an agonist, PPARδ controls a variety of physiological processes via regulation of its target genes. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is a cyclopentenone prostaglandin that features an electrophilic, α,β-unsaturated ketone (an enone) in the cyclopentenone ring. Many of 15d-PGJ2's biological effects result from covalent interaction between C9 and the thiol group of a catalytic cysteine (Cys) in target proteins. In this study, we investigated whether 15d-PGJ2 activates PPARδ by forming a covalent adduct. Our data show that 15d-PGJ2 activates PPARδ's transcriptional activity through formation of a covalent adduct between its endocyclic enone at C9 and Cys249 in the receptor's ligand-binding domain. As expected, no adduct formation was seen following a Cys-to-Ser mutation at residue 249 (C249S) of PPARδ or with a PGD2/PGJ2 analogue that lacks the electrophilic C9. Furthermore, the PPARδ C249S mutation weakened induction of the receptor's DNA binding activity by 15d-PGJ2, which highlights the biological significance of our findings. Calculated chemical properties as well as data from molecular orbital calculations, reactive molecular dynamics simulations, and intrinsic reaction coordinate modeling also supported the selectivity of 15d-PGJ2's C9 toward PPARδ's Cys thiol. In summary, our results provide the molecular, chemical, and structural basis of 15d-PGJ2-mediated PPARδ activation, designating 15d-PGJ2 as the first covalent PPARδ ligand to be identified.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。