Sp7/Osterix Is Restricted to Bone-Forming Vertebrates where It Acts as a Dlx Co-factor in Osteoblast Specification

Sp7/Osterix 仅限于骨形成脊椎动物,它在成骨细胞形成过程中充当 Dlx 辅助因子

阅读:6
作者:Hironori Hojo, Shinsuke Ohba, Xinjun He, Lick Pui Lai, Andrew P McMahon

Abstract

In extant species, bone formation is restricted to vertebrate species. Sp7/Osterix is a key transcriptional determinant of bone-secreting osteoblasts. We performed Sp7 chromatin immunoprecipitation sequencing analysis identifying a large set of predicted osteoblast enhancers and validated a subset of these in cell culture and transgenic mouse assays. Sp family members bind GC-rich target sequences through their zinc finger domain. Several lines of evidence suggest that Sp7 acts differently, engaging osteoblast targets in Dlx-containing regulatory complexes bound to AT-rich motifs. Amino acid differences in the Sp7 zinc finger domain reduce Sp7's affinity for the Sp family consensus GC-box target; Dlx5 binding maps to this domain of Sp7. The data support a model in which Dlx recruitment of Sp7 to osteoblast enhancers underlies Sp7-directed osteoblast specification. Because an Sp7-like zinc finger variant is restricted to vertebrates, the emergence of an Sp7 member within the Sp family was likely closely coupled to the evolution of bone-forming vertebrates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。