Pharmacological ascorbate combined with rucosopasem selectively radio-chemo-sensitizes NSCLC via generation of H2O2

药理抗坏血酸与 rucosopasem 联合通过生成 H2O2 选择性地对 NSCLC 进行放射化学增敏

阅读:7
作者:C F Pulliam, M A Fath, S Sho, S T Johnson, B A Wagner, M Singhania, A L Kalen, K Bayanbold, S R Solst, B G Allen, B N George, J M Caster, G R Buettner, D P Riley, J L Keene, R A Beardsley, D R Spitz7

Abstract

Differences in cancer and normal cell oxidative metabolism provide a unique therapeutic opportunity for developing combined modality approaches with redox-active small molecules as radio-chemosensitizers that are well-tolerated by normal tissues. Pentaazamacrocyclic Mn (II)-containing (MnPAM) superoxide dismutase (SOD) mimetics and pharmacological ascorbate given IV to achieve [mM] plasma levels (pharmacological ascorbate: P-AscH‾) have been shown to act individually as cancer cell radio- and chemosensitizers via the generation of H2O2in vivo. The current study shows that the combination of newly developed MnPAM dismutase mimetic, rucosopasem manganese (RUC) with P-AscH‾ radio-sensitizes non-small cell lung cancer cells (NSCLC) and increases steady state levels of intracellular H2O2 with no additional toxicity to normal human bronchial epithelial cells (HBECs). Conditional over expression of catalase (CAT) in H1299T CATc15 cells demonstrates that the combination of RUC and P-AscH‾ causes radio-sensitization through an H2O2-dependent mechanism. Interestingly, RUC combined with P-AscH‾ demonstrates more than additive cytotoxicity in both H1299T and A549 NSCLC cells, but conditional over-expression of ferritin heavy chain (FtH) protected only the H1299T, and not the A549, from this toxicity. Most importantly, the combination of RUC + P-AscH‾ was found to sensitize both H1299T and A549 cell types to radio-chemotherapy with cisplatin (CIS) + etoposide (ETOP). Finally, in H1299T NSCLC xenografts the combination of RUC + P-AscH‾ with CIS + ETOP and 12 × 2 Gy radiation significantly inhibits tumor growth and increased median overall over survival. These results support the hypothesis that selective MnPAM dismutase mimetic + P-AscH‾ enhances the efficacy of radio-chemotherapy in NSCLC through a mechanism governed by redox active metals and H2O2 production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。