Activity-dependent genes in mouse olfactory sensory neurons

小鼠嗅觉传感神经元中的活动依赖性基因

阅读:6
作者:Adrian M Fischl, Paula M Heron, Arnold J Stromberg, Timothy S McClintock

Abstract

Activity-dependent survival of olfactory sensory neurons (OSNs) may allow animals to tune their olfactory systems to match their odor environment. Activity-dependent genes should play important roles in this process, motivating experiments to identify them. Both unilateral naris occlusion of mice for 6 days and genetic silencing of OSNs decreased S100A5, Lrrc3b, Kirrel2, Slc17a6, Rasgrp4, Pcp4l1, Plcxd3, and Kcnn2 while increasing Kirrel3. Naris occlusion also decreased Eml5, Ptprn, and Nphs1. OSN number was unchanged and stress-response mRNAs were unaffected after 6 days of naris occlusion. This leaves odor stimulation as the most likely cause of differential abundance of these mRNAs, but through a mechanism that is slow or indirect for most because 30-40 min of odor stimulation increased only 3 of 11 mRNAs decreased by naris occlusion: S100A5, Lrrc3b, and Kirrel2. Odorant receptor (OR) mRNAs were significantly more variable than the average mRNA, consistent with difficulty in reliably detecting changes in these mRNAs after 6 days of naris occlusion. One OR mRNA, Olfr855, was consistently decreased, however. These results suggest that the latency from the cessation of odor stimulation to effects on activity-dependent OSN survival must be a week or more in juvenile mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。