Effect of Free Cysteine Residues to Serine Mutation on Cellodextrin Phosphorylase

游离半胱氨酸残基突变对纤维糊精磷酸化酶的影响

阅读:5
作者:Tomohiro Kuga, Naoki Sunagawa, Kiyohiko Igarashi

Abstract

Cellodextrin phosphorylase (CDP) plays a key role in energy-efficient cellulose metabolism of anaerobic bacteria by catalyzing phosphorolysis of cellodextrin to produce cellobiose and glucose 1-phosphate, which can be utilized for glycolysis without consumption of additional ATP. As the enzymatic phosphorolysis reaction is reversible, CDP is also employed to produce cellulosic materials in vitro. However, the enzyme is rapidly inactivated by oxidation, which hinders in vitro utilization in aerobic environments. It has been suggested that the cysteine residues of CDP, which do not form disulfide bonds, are responsible for the loss of activity, and the aim of the present work was to test this idea. For this purpose, we replaced all 11 free cysteine residues of CDP from Acetivibrio thermocellus (formerly known as Clostridium thermocellum) with serine, which structurally resembles cysteine in our previous work. Herein, we show that the resulting CDP variant, named CDP-CS, has comparable activity to the wild-type enzyme, but shows increased stability to oxidation during long-term storage. X-Ray crystallography indicated that the mutations did not markedly alter the overall structure of the enzyme. Ensemble refinement of the crystal structures of CDP and CDP-CS indicated that the C372S and C625S mutations reduce structural fluctuations in the protein main chain, which may contribute to the increased stability of CDP-CS to oxidation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。