MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism

MitoQ 通过 Nrf2 依赖机制保护急性肺损伤中内皮屏障的通透性

阅读:4
作者:Mengyuan Cen, Wei Ouyang, Wanying Zhang, Liping Yang, Xiuhui Lin, Min Dai, Huiqun Hu, Huifang Tang, Hongyun Liu, Jingyan Xia, Feng Xu

Abstract

Recently, numerous evidence has revealed that excessive reactive oxygen species (ROS) production and mitochondrial disruption during acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS) will aggravate the inflammatory process. To identify whether antioxidation can be one of the treatment strategies during this progress, we chose mitoQ, a mitochondria-targeted antioxidant that was proved to be effective in reducing ROS generated in mitochondria, as a ROS scavenger to investigate the role of antioxidation in ALI. We demonstrated that overoxidation occurred during the process of ALI, which could be reduced by mitoQ. In the meantime, apoptosis of endothelial cells of ALI mice, accompanied by hyperpermeability of pulmonary vascular and impaired pulmonary function, was partially reversed following an intraperitoneal injection of mitoQ. Moreover, in in vitro study, lipopolysaccharides (LPS) induced excessive ROS production, mitochondrial dysfunction and apoptosis in human pulmonary microvascular endothelial cells (HPMECs), which were rectified by mitoQ. To explore underlying mechanisms, we proceeded RNA-sequencing and found significantly upregulated expression of musculoaponeurotic fibrosarcoma F (MafF) in mitoQ treated group. Additionally, mitoQ inhibited the degradation and increased nuclear translocation of NF-E2-related factor 2 (Nrf2) and upregulated its downstream antioxidant response elements (AREs), such as heme oxygenase (HO)-1 and NAD(P)H:quinone oxidoreductase (NQO)-1. This effect was abolished by transfecting HPMECs with Nrf2 or Maff siRNA. In Nrf2 deficient mice, the protective effects of mitoQ on LPS model of ALI were largely vanished. Taken together, these results provide insights into how antioxidation exerts beneficial effects on ALI via maintaining mitochondrial hemostasis, inhibiting endothelial cells apoptosis, attenuating the endothelial disruption and regulating lung inflammation via Nrf2-MafF/ARE pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。