Effects of salinity on the transcriptome of growing maize leaf cells point at cell-age specificity in the involvement of the antioxidative response in cell growth restriction

盐度对生长中的玉米叶细胞转录组的影响表明,抗氧化反应在细胞生长限制中具有细胞年龄特异性

阅读:6
作者:Michael Kravchik, Nirit Bernstein

Background

Salinity inhibits growth and development of most plants. The response to salinity is complex and varies between plant organs and stages of development. It involves challenges of ion toxicities and deficiencies as well as osmotic and oxidative stresses. The range of functions affected by the stress is reflected in elaborate changes to the transcriptome. The mechanisms involved in the developmental-stage specificity of the inhibitory responses are not fully understood. The present study took advantage of the well characterized developmental progression that exists along the maize leaf, for identification of salinity induced, developmentally-associated changes to the transcriptome. Differential subtraction screening was conducted for cells of two developmental stages: from the center of the growth zone where the expansion rate is highest, and from older cells at a more distal location of the growing zone where the expansion rate is lower and the salinity restrictive effects are more pronounced. Real-Time PCR analysis was used for validation of the expression of selected genes.

Conclusions

The results demonstrate a cell-age specificity in the salinity response of growing cells, and point at involvement of the antioxidative response in cell growth restriction. Processes involved in reactive oxygen species (ROS) scavenging are more pronounced in the young cells, while the higher growth sensitivity of older cells is suggested to involve effects on cell-wall rigidity and lower protein protection.

Results

The salinity-induced changes demonstrated an age-related response of the growing tissue, with elevation of salinity-damages with increased age. Growth reduction, similar to the elevation of percentage dry matter (%DM), and Na and Cl concentrations were more pronounced in the older cells. The differential subtraction screening identified genes encoding to proteins involved in antioxidant defense, electron transfer and energy, structural proteins, transcription factors and photosynthesis proteins. Of special interest is the higher induced expression of genes involved in antioxidant protection in the young compared to older cells, which was accompanied by suppressed levels of reactive oxygen species (H2O2 and O2-). This was coupled with heightened expression in the older cells of genes that enhance cell-wall rigidity, which points at reduced potential for cell expansion. Conclusions: The results demonstrate a cell-age specificity in the salinity response of growing cells, and point at involvement of the antioxidative response in cell growth restriction. Processes involved in reactive oxygen species (ROS) scavenging are more pronounced in the young cells, while the higher growth sensitivity of older cells is suggested to involve effects on cell-wall rigidity and lower protein protection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。