GPIHBP1 stabilizes lipoprotein lipase and prevents its inhibition by angiopoietin-like 3 and angiopoietin-like 4

GPIHBP1 稳定脂蛋白脂肪酶并防止其受到血管生成素样 3 和血管生成素样 4 的抑制

阅读:5
作者:William K Sonnenburg, Daiguan Yu, E-Chiang Lee, Wei Xiong, Gennady Gololobov, Billie Key, Jason Gay, Nat Wilganowski, Yi Hu, Sharon Zhao, Matthias Schneider, Zhi-Ming Ding, Brian P Zambrowicz, Greg Landes, David R Powell, Urvi Desai

Abstract

Glycosylphosphatidylinositol-anchored HDL-binding protein (GPIHBP1) binds both LPL and chylomicrons, suggesting that GPIHBP1 is a platform for LPL-dependent processing of triglyceride (TG)-rich lipoproteins. Here, we investigated whether GPIHBP1 affects LPL activity in the absence and presence of LPL inhibitors angiopoietin-like (ANGPTL)3 and ANGPTL4. Like heparin, GPIHBP1 stabilized but did not activate LPL. ANGPTL4 potently inhibited nonstabilized LPL as well as heparin-stabilized LPL but not GPIHBP1-stabilized LPL. Like ANGPTL4, ANGPTL3 inhibited nonstabilized LPL but not GPIHBP1-stabilized LPL. ANGPTL3 also inhibited heparin-stabilized LPL but with less potency than nonstabilized LPL. Consistent with these in vitro findings, fasting serum TGs of Angptl4(-/-)/Gpihbp1(-/-) mice were lower than those of Gpihbp1(-/-) mice and approached those of wild-type littermates. In contrast, serum TGs of Angptl3(-/-)/Gpihbp1(-/-) mice were only slightly lower than those of Gpihbp1(-/-) mice. Treating Gpihbp1(-/-) mice with ANGPTL4- or ANGPTL3-neutralizing antibodies recapitulated the double knockout phenotypes. These data suggest that GPIHBP1 functions as an LPL stabilizer. Moreover, therapeutic agents that prevent LPL inhibition by ANGPTL4 or, to a lesser extent, ANGPTL3, may benefit individuals with hyperlipidemia caused by gene mutations associated with decreased LPL stability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。