Concurrent isolation of lymphocytes and granulocytes using prefocused free flow acoustophoresis

使用预聚焦自由流声泳同时分离淋巴细胞和粒细胞

阅读:8
作者:Carl Grenvall, Cecilia Magnusson, Hans Lilja, Thomas Laurell

Abstract

Microchip-based free flow acoustophoresis (FFA) in combination with two-dimensional cell prefocusing enables concurrent multiple target outlet fractionation of leukocytes into subpopulations (lymphocytes, monocytes, and granulocytes); we report on this method here. We also observed significantly increased accuracy in size-based fractionation of microbeads as compared to previously presented FFA multiple outlet systems. Fluorescence microscopy illustrates the importance of two-dimensional prefocusing where a sample mixture of 3, 7, and 10 μm beads are separated into well-confined particle streams and collected in their respective target outlets. Flow cytometry data for lymphocytes and granulocytes, respectively, in their corresponding outlets verify concurrent isolation of leukocyte subpopulations with high purity (95.2 ± 0.6% and 98.5 ± 0.7%) and high recovery (86.5 ± 10.9% and 68.4 ± 10.6%). A relatively low purity and high recovery of monocytes (25.2% ± 5.4% and 83.1 ± 4.3%) was obtained in the third target outlet. No subpopulation bias was observed. These data demonstrate an unprecedented separation of leukocyte subpopulations at flow rates of ∼100 μL/min and ∼1 M cells/mL sample concentrations, not previously reported in acoustofluidic systems. Two-dimensional prefocusing FFA with multiple target outlets is a viable alternative to current methods for particle fractionation and cell isolation, requiring a minimum of sample preparation and lowering analysis time and cost.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。