Do Human iPSC-Derived Cardiomyocytes Cultured on PLA Scaffolds Induce Expression of CD28/CTLA-4 by T Lymphocytes?

在 PLA 支架上培养的人类 iPSC 衍生的心肌细胞是否会诱导 T 淋巴细胞表达 CD28/CTLA-4?

阅读:6
作者:David Sergeevichev, Victor Balashov, Victoria Kozyreva, Sophia Pavlova, Maria Vasiliyeva, Alexander Romanov, Elena Chepeleva

Abstract

Many research groups have developed various types of tissue-engineered cardiac constructs. However, the immunological properties of such artificial tissues are not yet fully understood. Previously, we developed microfiber scaffolds carrying human iPSC-derived cardiomyocytes (hiPSC-CM). In this work, we evaluated the ability of these tissue-engineered constructs to activate the expression of CD28 and CTLA-4 proteins on T lymphocytes, which are early markers of the immune response. For this purpose, electrospun PLA microfiber scaffolds were seeded with hiPSC-CM and cultured for 2 weeks. Allogeneic mononuclear cells were then co-cultured for 48 h with three groups of samples: bare scaffolds, pure cardiomyocyte culture and tissue-engineered constructs, followed by analysis of CD28/CTLA-4 expression on T lymphocytes using flow cytometry. PLA scaffolds and concanavalin A stimulation (positive control) statistically significantly increased CD28 expression on CD4+ T cells (up to 61.3% and 66.3%) CD8+ T cells (up to 17.8% and 21.7%). CD28/CTLA-4 expression was not increased when T lymphocytes were co-cultured with cardiac tissue-engineered constructs and iPSC-CM monolayers. Thus, iPSC-CM in monolayers and on PLA microfiber scaffolds did not induce T cell activation, which suggests that such cardiac constructs would not be a cause of rejection after implantation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。