Potent constitutive cyclic AMP-generating activity of XLαs implicates this imprinted GNAS product in the pathogenesis of McCune-Albright syndrome and fibrous dysplasia of bone

XLαs 具有强大的组成性环磷酸腺苷生成活性,表明这种印迹 GNAS 产物与 McCune-Albright 综合征和骨纤维发育不良的发病机制有关

阅读:5
作者:Virginie Mariot, Joy Y Wu, Cumhur Aydin, Giovanna Mantovani, Matthew J Mahon, Agnès Linglart, Murat Bastepe

Abstract

Patients with McCune-Albright syndrome (MAS), characterized primarily by hyperpigmented skin lesions, precocious puberty, and fibrous dyslasia of bone, carry postzygotic heterozygous mutations of GNAS causing constitutive cAMP signaling. GNAS encodes the α-subunit of the stimulatory G protein (Gsα), as well as a large variant (XLαs) derived from the paternal allele. The mutations causing MAS affect both GNAS products, but whether XLαs, like Gsα, can be involved in the pathogenesis remains unknown. Here, we investigated biopsy samples from four previously reported and eight new patients with MAS. Activating mutations of GNAS (Arg201 with respect to the amino acid sequence of Gsα) were present in all the previously reported and five of the new cases. The mutation was detected within the paternally expressed XLαs transcript in five and the maternally expressed NESP55 transcript in four cases. Tissues carrying paternal mutations appeared to have higher XLαs mRNA levels than maternal mutations. The human XLαs mutant analogous to Gsα-R201H (XLαs-R543H) showed markedly higher basal cAMP accumulation than wild-type XLαs in transfected cells. Wild-type XLαs demonstrated higher basal and isoproterenol-induced cAMP signaling than Gsα and co-purified with Gβ1γ2 in transduced cells. XLαs mRNA was measurable in mouse calvarial cells, with its level being significantly higher in undifferentiated cells than those expressing preosteoblastic markers osterix and alkaline phosphatase. XLαs mRNA was also expressed in murine bone marrow stromal cells and preosteoblastic MC3T3-E1 cells. Our findings are consistent with the possibility that constitutive XLαs activity adds to the molecular pathogenesis of MAS and fibrous dysplasia of bone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。