P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib

P-糖蛋白和乳腺癌耐药蛋白影响达沙替尼的大脑分布

阅读:7
作者:Ying Chen, Sagar Agarwal, Naveed M Shaik, Cliff Chen, Zheng Yang, William F Elmquist

Abstract

The novel tyrosine kinase inhibitor dasatinib (Sprycel; BMS-354825) is approved for use in imatinib (Gleevec; STI 571)-resistant or -intolerant chronic myelogenous leukemia and may be useful for other tumors in the central nervous system (CNS). The objective of this study was to investigate the role of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) in modulating the CNS penetration of dasatinib. Results from the in vitro studies indicate that cellular delivery of dasatinib is significantly limited by active efflux due to both P-gp and BCRP. Permeability studies indicated greater permeability in the basolateral-to-apical direction than in the apical-to-basolateral direction due to active efflux by P-gp or BCRP. Selective inhibitors of P-gp and BCRP, such as (R)-4-((1aR,6R,10bS)-1,2-difluoro-1,1a,6,10b-tetrahydrodibenzo-(a,e)cyclopropa(c) cycloheptan-6-yl)-alpha-((5-quinoloyloxy)methyl)-1-piperazineethanol, trihydrochloride (zosuquidar; LY335979) and 3-(6-isobutyl-9-methoxy-1,4-dioxo-1,2,3,4,6,7,12,12alpha-octahydropyrazino1',2': 1,6pryrido3,4-bindol-3-yl)-propionic acid tert-butyl ester (Ko143), were able to restore the intracellular accumulation and abolish the directionality in net flux of dasatinib. In vivo brain distribution studies showed that the CNS distribution of dasatinib is limited, with the brain-to-plasma concentration ratios less than 0.12 in wild-type mice, which increased approximately 8-fold in Mdr1a/b(-/-) Bcrp1(-/-) mice. Dasatinib brain distribution was significantly increased in Mdr1a/b(-/-) mice and when wild-type mice were pretreated with LY335979. Simultaneous inhibition of P-gp and BCRP by elacridar [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide] (GF120918) resulted in a 5-fold increase in brain concentration. These in vitro and in vivo studies demonstrate that dasatinib is a substrate for the important efflux transporters p-glycoprotein and BCRP. These transport systems play a significant role in limiting the CNS delivery of dasatinib and may have direct implications in the treatment of primary and metastatic brain tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。