Inferring secretory and metabolic pathway activity from omic data with secCellFie

使用 secCellFie 根据组学数据推断分泌和代谢途径活动

阅读:4
作者:Helen O Masson, Mojtaba Samoudi, Caressa M Robinson, Chih-Chung Kuo, Linus Weiss, Km Shams Ud Doha, Alex Campos, Vijay Tejwani, Hussain Dahodwala, Patrice Menard, Bjorn G Voldborg, Susan T Sharfstein, Nathan E Lewis

Abstract

Understanding protein secretion has considerable importance in the biotechnology industry and important implications in a broad range of normal and pathological conditions including development, immunology, and tissue function. While great progress has been made in studying individual proteins in the secretory pathway, measuring and quantifying mechanistic changes in the pathway's activity remains challenging due to the complexity of the biomolecular systems involved. Systems biology has begun to address this issue with the development of algorithmic tools for analyzing biological pathways; however most of these tools remain accessible only to experts in systems biology with extensive computational experience. Here, we expand upon the user-friendly CellFie tool which quantifies metabolic activity from omic data to include secretory pathway functions, allowing any scientist to infer protein secretion capabilities from omic data. We demonstrate how the secretory expansion of CellFie (secCellFie) can be used to predict metabolic and secretory functions across diverse immune cells, hepatokine secretion in a cell model of NAFLD, and antibody production in Chinese Hamster Ovary cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。