An Improved Method and Device for Nucleic Acid Isolation Using a High-Salt Gel Electroelution Trap

一种利用高盐凝胶电洗脱阱进行核酸分离的改进方法和装置

阅读:7
作者:Ruslan Kalendar, Konstantin I Ivanov, Ilyas Akhmetollayev, Ulykbek Kairov, Olga Samuilova, Timo Burster, Andrey A Zamyatnin Jr

Abstract

The success of DNA analytical methods, including long-read sequencing, depends on the availability of high-quality, purified DNA. Previously, we developed a method and device for isolating high-molecular-weight (HMW) DNA for long-read sequencing using a high-salt gel electroelution trap. Here, we present an improved version of this method for purifying nucleic acids with high yield and purity from even the most challenging biological samples. The proposed method is a significant improvement over the previously published procedure, offering a simple, fast, and efficient solution for isolating HMW DNA and smaller DNA and RNA molecules. The method utilizes vertical gel electrophoresis in two nested, partially overlapping electrophoretic columns. The upper, smaller-diameter column has a thin layer of agarose gel at the bottom, which separates nucleic acids from impurities, and an electrophoresis buffer on top. After the target nucleic acid has been gel-purified on the upper column, a larger-diameter column with a layer of high-salt gel overlaid with electrophoresis buffer is inserted from below. The purified nucleic acid is then electroeluted into the buffer-filled gap between the separating gel and the high-salt gel, where excess counterions from the high-salt gel slow its migration and cause it to accumulate. The proposed vertical purification system outperforms the previously described horizontal system in terms of ease of use, speed, scalability, and compatibility with high-throughput workflows. Furthermore, the vertical system allows for the sequential purification of several nucleic acid species from the same sample using interchangeable salt-gel columns.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。