Crucial Role of AIM/CD5L in the Development of Glomerular Inflammation in IgA Nephropathy

AIM/CD5L 在 IgA 肾病肾小球炎症发展中的关键作用

阅读:6
作者:Akiko Takahata, Satoko Arai, Emiri Hiramoto, Kento Kitada, Rina Kato, Yuko Makita, Hitoshi Suzuki, Junichiro Nakata, Kimi Araki, Toru Miyazaki, Yusuke Suzuki

Background

IgA nephropathy (IgAN) begins with aberrant IgA deposition in glomeruli, progresses to IgM/IgG/complement codeposition, and

Conclusions

AIM may contribute to stable immune complex formation in glomeruli, thereby facilitating IgAN progression. Therefore, AIM deposition blockage or disassociation from IgM/IgG may present a new therapeutic target on the basis of its role in IgAN inflammation initiation.

Methods

We established an AIM-deficient IgAN model (AIM-/- gddY) using CRISPR/Cas9 and compared its phenotype with that of wild-type gddY with or without recombinant AIM administration. An IgA-deficient IgAN model (IgA-/- gddY) was also generated to further determine the role of AIM.

Results

In both human and murine IgAN, AIM colocalized with IgA/IgM/IgG in glomeruli, whereas control kidneys did not exhibit AIM deposition. Although AIM-/- gddY showed IgA deposition at levels comparable with those of wild-type gddY, they did not exhibit glomerular accumulation of IgM/IgG complements, CD45+ leukocyte infiltration, and upregulation of inflammatory/fibrogenic genes, indicating protection from glomerular lesions and proteinuria/hematuria. Recombinant AIM administration reconstituted the IgAN phenotype, resulting in IgM/IgG/complement IgA codeposition. Neither spontaneous IgM/IgG codeposition nor disease was observed in IgA-/- gddY mice. Conclusions: AIM may contribute to stable immune complex formation in glomeruli, thereby facilitating IgAN progression. Therefore, AIM deposition blockage or disassociation from IgM/IgG may present a new therapeutic target on the basis of its role in IgAN inflammation initiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。