DDAH1 recruits peroxiredoxin 1 and sulfiredoxin 1 to preserve its activity and regulate intracellular redox homeostasis

DDAH1 募集过氧化物酶 1 和硫氧化物 1 来维持其活性并调节细胞内氧化还原稳态

阅读:10
作者:Juntao Yuan, Zhuoran Yu, Ping Zhang, Kai Luo, Ying Xu, Ting Lan, Min Zhang, Yingjie Chen, Zhongbing Lu

Abstract

Growing evidence suggests that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a crucial enzyme for the degradation of asymmetric dimethylarginine (ADMA), is closely related to oxidative stress during the development of multiple diseases. However, the underlying mechanism by which DDAH1 regulates the intracellular redox state remains unclear. In the present study, DDAH1 was shown to interact with peroxiredoxin 1 (PRDX1) and sulfiredoxin 1 (SRXN1), and these interactions could be enhanced by oxidative stress. In HepG2 cells, H2O2-induced downregulation of DDAH1 and accumulation of ADMA were attenuated by overexpression of PRDX1 or SRXN1 but exacerbated by knockdown of PRDX1 or SRXN1. On the other hand, DDAH1 also maintained the expression of PRDX1 and SRXN1 in H2O2-treated cells. Furthermore, global knockout of Ddah1 (Ddah1-/-) or liver-specific knockout of Ddah1 (Ddah1HKO) exacerbated, while overexpression of DDAH1 alleviated liver dysfunction, hepatic oxidative stress and downregulation of PRDX1 and SRXN1 in CCl4-treated mice. Overexpression of liver PRDX1 improved liver function, attenuated hepatic oxidative stress and DDAH1 downregulation, and diminished the differences between wild type and Ddah1-/- mice after CCl4 treatment. Collectively, our results suggest that the regulatory effect of DDAH1 on cellular redox homeostasis under stress conditions is due, at least in part, to the interaction with PRDX1 and SRXN1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。