Dynamic differences in oxidative stress and the regulation of metabolism with age in visceral versus subcutaneous adipose

内脏脂肪与皮下脂肪组织氧化应激和代谢调节随年龄变化的动态差异

阅读:10
作者:Roy Liu, Daniel A Pulliam, Yuhong Liu, Adam B Salmon

Abstract

Once thought only as storage for excess nutrients, adipose tissue has been shown to be a dynamic organ implicated in the regulation of many physiological processes. There is emerging evidence supporting differential roles for visceral and subcutaneous white adipose tissue in maintaining health, although how these roles are modulated by the aging process is not clear. However, the proposed beneficial effects of subcutaneous fat suggest that targeting maintenance of this tissue could lead to healthier aging. In this study, we tested whether alterations in adipose function with age might be associated with changes in oxidative stress. Using visceral and subcutaneous adipose from C57BL/6 mice, we discovered effects of both age and depot location on markers of lipolysis and adipogenesis. Conversely, accumulation of oxidative damage and changes in enzymatic antioxidant expression with age were largely similar between these two depots. The activation of each of the stress signaling pathways JNK and MAPK/ERK was relatively suppressed in subcutaneous adipose tissue suggesting reduced sensitivity to oxidative stress. Similarly, pre-adipocytes from subcutaneous adipose were significantly more resistant than visceral-derived cells to cell death caused by oxidative stress. Cellular respiration in visceral-derived cells was dramatically higher than in cells derived from subcutaneous adipose despite little evidence for differences in mitochondrial density. Together, our data identify molecular mechanisms by which visceral and subcutaneous adipose differ with age and suggest potential targetable means to preserve healthy adipose aging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。