In vivo study of polyurethane and tannin-modified hydroxyapatite composites for calvarial regeneration

聚氨酯和单宁改性羟基磷灰石复合材料用于颅骨再生的体内研究

阅读:10
作者:Xinggui Tian, Xiaowei Yuan, Daxiong Feng, Min Wu, Yuping Yuan, Chuying Ma, Denghui Xie, Jinshan Guo, Chao Liu, Zhihui Lu

Abstract

Biomaterial mediated bone regeneration is an attractive strategy for bone defect treatment. Organic/inorganic composites have been well established as effective bone graft. Here, the bone regenerative effect of the composites made from tannic acid (TA) modified hydroxyapatite (HA) (THA) or TA & silver nanoparticles (Ag NPs) modified HA (Ag-THA) and polyurethane (PU) was evaluated on critical-sized calvarial defects in rats. The in vivo study indicates that PU/THA and PU/Ag-THA scaffolds exhibited acceptable biocompatibility and induced significantly enhanced bone mineral densities comparing with the blank control (CON) group as well as PU/HA group. The inclusion of TA on HA brought the composites with enhanced osteogenesis and angiogenesis, evidenced by osteocalcin (OCN) and vascular endothelial growth factor (VEGF) immunohistochemical staining. Tartrate resistant acid phosphatase (TRAP) staining showed high osteoclast activity along with osteogenesis, especially in PU/THA and PU/Ag-THA groups. However, further introduction of Ag NPs on HA depressed the angiogenesis of the composites, leading to even lower VEGF expression than that of CON group. This study once more proved that THA can serve as a better bone composite component that pure HA and can promote osteogenesis and angiogenesis. While, the introduction of antimicrobial Ag NPs on HA need to be controlled in some extent not to affect the angiogenesis of the composites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。