Network Pharmacology and Pharmacological Mechanism of CV-3 in Atrial Fibrillation

CV-3在心房颤动中的网络药理学和药理学机制

阅读:8
作者:Zundong Wang, Zhen Zeng, Yongsheng Hu, Hengcan Sun, Ying Tang, Weiqin Liu

Abstract

The high fatality and disability rate of atrial fibrillation (AF) strongly promote the development of pathogenesis and treatment of AF that is of great value. The present research attempted to clarify potential mechanisms of Mujiangzi oil (CV-3) in treating AF by constructing an AF cardiomyocytes model and using a network pharmacology approach. The experiment was divided into 4 groups: control, an AF model, AF + CV-3-treated, and the AF + verapamil group. Flow cytometry and the MTT assay were employed to detect cell apoptosis and cell viability, respectively. The main active components of CV-3 and predicted targets were obtained firstly, and molecular docking was performed. In the AF model, the cell apoptosis was aggravated, but inhibited in the CV-3-treated group. In addition, the cell viability was recovered after CV-3 treatment compared with the model group. Five potential active compounds of CV-3 were collected, including effective ingredients N-decanoic acid, spathulenol, copaene, β-panasinsene, and eucalyptol. Among them, N-decanoic acid and spathulenol was demonstrated to bind to PTGS2 with binding energy of -4.08 and -7.09 kcal/mol, respectively, and hydrogen bonds interaction were found. The present study indicated that CV-3 could alleviate AF cardiomyocytes apoptosis and improve cardiomyocytes viability, and N-decanoic acid and spathulenol may be the key components of CV-3 in treatment of AF by regulating PTGS2. This study provided the possible target PTGS2 and the understanding of molecular mechanisms of CV-3 in treating AF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。