Background
Multidimensional protein identification technology (MudPIT)-based shot-gun proteomics has been proven to be an effective platform for functional proteomics. In particular, the various sample preparation
Conclusions
We present a rapid sample preparation method and bioinformatics classification for effective proteomics analysis of plant hormone responses. The study highlighted the largely differing response to zeatin and brassinosteroid by the metabolic pathways in chloroplast and mitochondria.
Results
As compared to traditional organelle proteomics, the organelle-enrichment method both simplifies the sample preparation and increases the number of proteins identified in the targeted organelle as well as the entire sample. Both zeatin and BR induce dramatic changes in signaling and metabolism. Their shared-regulated protein components indicate that both hormones may down-regulate some key components in auxin responses. However, they have shown distinct induction and suppression of metabolic pathways in mitochondria and chloroplast. For zeatin, the metabolic pathways in sucrose and starch biosynthesis and utilization were significantly changed, yet the lipid biosynthesis remained unchanged. For BR, lipid biosynthesis and β-oxidation were both down-regulated, yet the changes in sucrose and starch metabolism were minor. Conclusions: We present a rapid sample preparation method and bioinformatics classification for effective proteomics analysis of plant hormone responses. The study highlighted the largely differing response to zeatin and brassinosteroid by the metabolic pathways in chloroplast and mitochondria.
