Optimization of the Elasticity and Adhesion of Catechol- or Dopamine-Loaded Gelatin Gels under Oxidative Conditions

氧化条件下儿茶酚或多巴胺明胶凝胶的弹性和粘附性的优化

阅读:5
作者:Florence Back, Eric Mathieu, Cosette Betscha, Salima El Yakhlifi, Youri Arntz, Vincent Ball

Abstract

The synthesis of surgical adhesives is based on the need to design glues that give rise to strong and fast bonds without cytotoxic side effects. A recent trend in surgical adhesives is to use gel-forming polymers modified with catechol groups, which can undergo oxidative crosslinking reactions and are strongly adhesive to all kinds on surfaces in wet conditions. We previously showed that blending gelatin with catechol can yield strong adhesion when the catechol is oxidized by a strong oxidant. Our previous work was limited to the study of the variation in the sodium periodate concentration. In this article, for an in-depth approach to the interactions between the components of the gels, the influence of the gelatin, the sodium periodate and dopamine/(pyro)catechol concentration on the storage (G') and loss (G″) moduli of the gels, as well as their adhesion on steel, have been studied by shear rheometry. The hydrogels were characterized by infrared and UV-Vis spectroscopy and the size of their pores visualized by digital microscopy and SEM after freeze drying but without further additives. In terms of adhesion between two stainless steel plates, the optimum was obtained for a concentration of 10% w/v in gelatin, 10 mM in sodium periodate, and 20 mM in phenolic compounds. Below these values, it is likely that crosslinking has not been maximized and that the oxidizing environment is weakening the gelatin. Above these values, the loss in adhesiveness may result from the disruption of the alpha helixes due to the large number of phenolic compounds as well as the maintenance of an oxidizing environment. Overall, this investigation shows the possibility to design strongly adhesive hydrogels to metal surfaces by blending gelatin with polyphenols in oxidative conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。