Performance Evaluation of SpliceAI for the Prediction of Splicing of NF1 Variants

SpliceAI 对 NF1 变体剪接预测的性能评估

阅读:9
作者:Changhee Ha, Jong-Won Kim, Ja-Hyun Jang

Abstract

Neurofibromatosis type 1, characterized by neurofibromas and café-au-lait macules, is one of the most common genetic disorders caused by pathogenic NF1 variants. Because of the high proportion of splicing mutations in NF1, identifying variants that alter splicing may be an essential issue for laboratories. Here, we investigated the sensitivity and specificity of SpliceAI, a recently introduced in silico splicing prediction algorithm in conjunction with other in silico tools. We evaluated 285 NF1 variants identified from 653 patients. The effect on variants on splicing alteration was confirmed by complementary DNA sequencing followed by genomic DNA sequencing. For in silico prediction of splicing effects, we used SpliceAI, MaxEntScan (MES), and Splice Site Finder-like (SSF). The sensitivity and specificity of SpliceAI were 94.5% and 94.3%, respectively, with a cut-off value of Δ Score > 0.22. The area under the curve of SpliceAI was 0.975 (p < 0.0001). Combined analysis of MES/SSF showed a sensitivity of 83.6% and specificity of 82.5%. The concordance rate between SpliceAI and MES/SSF was 84.2%. SpliceAI showed better performance for the prediction of splicing alteration for NF1 variants compared with MES/SSF. As a convenient web-based tool, SpliceAI may be helpful in clinical laboratories conducting DNA-based NF1 sequencing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。