A highly sensitive electrochemiluminescence immunoassay for the neurofilament heavy chain protein

一种用于神经丝重链蛋白的高灵敏度电化学发光免疫分析方法

阅读:10
作者:Jens Kuhle, Axel Regeniter, David Leppert, Matthias Mehling, Ludwig Kappos, Raija L P Lindberg, Axel Petzold

Background

The loss of neurological function is closely related to axonal damage. Neurofilament subunits are concentrated in neurons and axons and have emerged as promising biomarkers for neurodegeneration. Electrochemiluminescence (ECL) based assays are known to be of superior sensitivity and require less sample volume than conventional ELISAs.

Conclusion

The new ECL based assay for NfH(SMI35) in CSF is superior in terms of sensitivity, precision and accuracy to previously published methods (Petzold et al., 2003; Shaw et al., 2005; Teunissen et al., 2009). The improved performance and small sample volume requirement qualify this method in experimental settings and clinical trials designed to perform a number of tests on limited amounts of material.

Methods

We developed an ECL based solid-phase sandwich immunoassay to measure the neurofilament heavy chain protein (NfH(SMI35)) in CSF. We employed commercially available antibodies as previously used in a conventional ELISA (Petzold et al., 2003; Petzold and Shaw, 2007). The optimised and validated assay was applied in a reference cohort and defined patient groups.

Results

Analytical sensitivity (background plus three SD) of our assay was 2.4 pg/ml. The mean intra-assay coefficient of variation (CV) was 4.8% and the inter-assay CV 8.4%. All measured control and patient samples produced signals well above background. Patients with multiple sclerosis (MS) (median 46.2 pg/ml, n=95), amyotrophic lateral sclerosis (ALS) (160.1 pg/ml, n=50), mild cognitive impairment/Alzheimer's disease (MCI/AD) (65.6 pg/ml, n=20), Guillain-Barre syndrome (GBS) (91.0 pg/ml, n=20) or subarachnoid hemorrhage (SAH) (345.0 pg/ml, n=20) had higher CSF NfH(SMI35) values than the reference cohort (27.1 pg/ml, n=73, p<0.0001 for each comparison).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。