Electron transfer between cytochrome c and microsomal monooxygenase generates reactive oxygen species that accelerates apoptosis

细胞色素 c 和微粒体单加氧酶之间的电子转移产生活性氧,加速细胞凋亡

阅读:9
作者:Han Xie, Li Song, Sagie Katz, Jinyu Zhu, Yawen Liu, Jinping Tang, Linjun Cai, Peter Hildebrandt, Xiao Xia Han

Abstract

Generation of reactive oxygen species (ROS) are possibly induced by the crosstalk between mitochondria and endoplasmic reticula, which is physiologically important in apoptosis. Cytochrome c (Cyt c) is believed to play a crucial role in such signaling pathway by interrupting the coupling within microsomal monooxygenase (MMO). In this study, the correlation of ROS production with the electron transfer between Cyt c and the MMO system is investigated by resonance Raman (RR) spectroscopy. Binding of Cyt c to MMO is found to induce the production of ROS, which is quantitatively determined by the in-situ RR spectroscopy reflecting the interactions of Cyt c with generated ROS. The amount of ROS that is produced from isolated endoplasmic reticulum depends on the redox state of the Cyt c, indicating the important role of oxidized Cyt c in accelerating apoptosis. The role of electron transfer from MMO to Cyt c in the apoptotic mitochondria-endoplasmic reticulum pathway is accordingly proposed. This study is of significance for a deeper understanding of how Cyt c regulates apoptotic pathways through the endoplasmic reticulum, and thus may provide a rational basis for the design of antitumor drugs for cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。