Induction of a regulatory myeloid program in bacterial sepsis and severe COVID-19

在细菌性脓毒症和严重 COVID-19 中诱导调节性髓系程序

阅读:10
作者:Miguel Reyes, Michael R Filbin, Roby P Bhattacharyya, Abraham Sonny, Arnav Mehta, Kianna Billman, Kyle R Kays, Mayra Pinilla-Vera, Maura E Benson, Lisa A Cosimi, Deborah T Hung, Bruce D Levy, Alexandra-Chloe Villani, Moshe Sade-Feldman, Rebecca M Baron, Marcia B Goldberg, Paul C Blainey, Nir Hacohen

Abstract

A recent estimate suggests that one in five deaths globally are associated with sepsis 1 . To date, no targeted treatment is available for this syndrome, likely due to substantial patient heterogeneity 2,3 and our lack of insight into sepsis immunopathology 4 . These issues are highlighted by the current COVID-19 pandemic, wherein many clinical manifestations of severe SARS-CoV-2 infection parallel bacterial sepsis 5-8 . We previously reported an expanded CD14+ monocyte state, MS1, in patients with bacterial sepsis or non-infectious critical illness, and validated its expansion in sepsis across thousands of patients using public transcriptomic data 9 . Despite its marked expansion in the circulation of bacterial sepsis patients, its relevance to viral sepsis and association with disease outcomes have not been examined. In addition, the ontogeny and function of this monocyte state remain poorly characterized. Using public transcriptomic data, we show that the expression of the MS1 program is associated with sepsis mortality and is up-regulated in monocytes from patients with severe COVID-19. We found that blood plasma from bacterial sepsis or COVID-19 patients with severe disease induces emergency myelopoiesis and expression of the MS1 program, which are dependent on the cytokines IL-6 and IL-10. Finally, we demonstrate that MS1 cells are broadly immunosuppressive, similar to monocytic myeloid-derived suppressor cells (MDSCs), and have decreased responsiveness to stimulation. Our findings highlight the utility of regulatory myeloid cells in sepsis prognosis, and the role of systemic cytokines in inducing emergency myelopoiesis during severe bacterial and SARS-CoV-2 infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。