A reinforced merging methodology for mapping unique peptide motifs in members of protein families

一种用于映射蛋白质家族成员中独特肽基序的强化合并方法

阅读:7
作者:Hao-Teng Chang, Tun-Wen Pai, Tan-chi Fan, Bo-Han Su, Pei-Chih Wu, Chuan-Yi Tang, Chun-Tien Chang, Shi-Hwei Liu, Margaret Dah-Tsyr Chang

Background

Members of a protein family often have highly conserved sequences; most of these sequences carry identical biological functions and possess similar three-dimensional (3-D) structures. However, enzymes with high sequence identity may acquire differential functions other than the common catalytic ability. It is probable that each of their variable regions consists of a unique peptide motif (UPM), which selectively interacts with other cellular proteins, rendering additional biological activities. The ability to identify and localize such UPMs is paramount in recognizing the characteristic role of each member of a protein family.

Conclusion

Our study provides a bioinformatic approach for searching and predicting potential epitopes and interacting motifs that distinguish different members of a protein family.

Results

We have developed a reinforced merging algorithm (RMA) with which non-gapped UPMs were identified in a variety of query protein sequences including members of human ribonuclease A (RNaseA), epidermal growth factor receptor (EGFR), matrix metalloproteinase (MMP), and Sma-and-Mad related protein families (Smad). The UPMs generally occupy specific positions in the resolved 3-D structures, especially the loop regions on the structural surfaces. These motifs coincide with the recognition sites for antibodies, as the epitopes of four monoclonal antibodies and two polyclonal antibodies were shown to overlap with the UPMs. Most of the UPMs were found to correlate well with the potential antigenic regions predicted by PROTEAN. Furthermore, an accuracy of 70% can be achieved in terms of mapping a UPM to an epitope.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。