Vesicle Impact Electrochemical Cytometry to Determine Carbon Nanotube-Induced Fusion of Intracellular Vesicles

囊泡撞击电化学细胞术测定碳纳米管诱导的细胞内囊泡融合

阅读:8
作者:Amir Hatamie, Lin Ren, Xinwei Zhang, Andrew G Ewing

Abstract

Carbon nanotube (CNT)-modified electrodes are used to obtain new measurements of vesicle content via amperometry. We have investigated the interaction between CNTs and isolated adrenal chromaffin vesicles (as a model) by vesicle impact electrochemical cytometry. Our data show that the presence of CNTs not only significantly increased the vesicular catecholamine number from 2,250,000 ± 112,766 molecules on a bare electrode to 3,880,000 ± 686,573 molecules on CNT/carbon fiber electrodes but also caused an enhancement in the maximum intensity of the current, which implies the existence of strong interactions between vesicle biolayers and CNTs and an altered electroporation process. We suggest that CNTs might perturb and destabilize the membrane structure of intracellular vesicles and cause the aggregation or fusion of vesicles into new vesicles with larger size and higher content. Our findings are consistent with previous computational and experimental results and support the hypothesis that CNTs as a mediator can rearrange the phospholipid bilayer membrane and trigger homotypic fusion of intracellular vesicles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。