Immunologic glycosphingolipidomics and NKT cell development in mouse thymus

小鼠胸腺中的免疫糖鞘脂组学和 NKT 细胞发育

阅读:16
作者:Yunsen Li, Prakash Thapa, David Hawke, Yuji Kondo, Keiko Furukawa, Koichi Furukawa, Fong-Fu Hsu, Dietlind Adlercreutz, Joel Weadge, Monica M Palcic, Peng G Wang, Steven B Levery, Dapeng Zhou

Abstract

Invariant NKT cells are a hybrid cell type of Natural Killer cells and T cells, whose development is dependent on thymic positive selection mediated by double positive thymocytes through their recognition of natural ligands presented by CD1d, a nonpolymorphic, non-MHC, MHC-like antigen presenting molecule. Genetic evidence suggested that beta-glucosylceramide derived glycosphingolipids (GSLs) are natural ligands for NKT cells. N-butyldeoxygalactonojirimycin (NB-DGJ), a drug that specifically inhibits the glucosylceramide synthase, inhibits the endogenous ligands for NKT cells. Furthermore, we and others have found a beta-linked glycosphingolipid, isoglobotriaosylceramide (iGb3), is a stimulatory NKT ligand. The iGb3 synthase knockout mice have a normal NKT development and function, indicating that other ligands exist and remain to be identified. In this study, we have performed a glycosphingolipidomics study of mouse thymus, and studied mice mutants which are deficient in beta-hexosaminidase b or alpha-galactosidase A, two glycosidases that are up- and downstream agents of iGb3 turnover, respectively. Our mass spectrometry methods generated a first database for glycosphingolipids expressed in mouse thymus, which are specifically regulated by rate-limiting glycosidases. Among the identified thymic glycosphingolipids, only iGb3 is a stimulatory ligand for NKT cells, suggesting that large-scale fractionation, enrichment and characterization of minor species of glycosphingolipids are necessary for identifying additional ligands for NKT cells. Our results also provide early insights into cellular lipidomics studies, with a specific focus on the important immunological functions of glycosphingolipids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。