NIR-triggered thermo-responsive biodegradable hydrogel with combination of photothermal and thermodynamic therapy for hypoxic tumor

近红外触发热响应可生物降解水凝胶结合光热和热力学疗法治疗缺氧肿瘤

阅读:12
作者:Xiaoqi Sun, Di Liu, Xiaoyu Xu, Yifeng Shen, Yanjuan Huang, Zishan Zeng, Meng Xia, Chunshun Zhao

Abstract

Hypoxia is a typical feature of solid tumors, which highly limits the application of the oxygen-dependent therapy. Also, the dense and hyperbaric tumor tissues impede the penetration of nanoparticles into the deep tumor. Thereby, we designed a novel localized injectable hydrogel combining the photothermal therapy (PTT) and the thermodynamic therapy (TDT), which is based on the generation of free radicals even in the absence of oxygen for hypoxic tumor therapy. In our study, gold nanorods (AuNRs) and 2,2'-Azobis[2-(2-imidazalin-2-yl)propane] dihydrochlaride (AIPH) were incorporated into the hydrogel networks, which were formed by the copolymerization of hydrophobic N-isopropyl acrylamide (NIPAM) and hydrophilic glycidyl methacrylate modified hyaluronic acid (HA-GMA) to fabricate an injectable and near-infrared (NIR) responsive hydrogel. The crosslinked in situ forming hydrogel could not only realize PTT upon the NIR laser irradiation, but also generate free radicals even in hypoxic condition. Meanwhile the shrink of hydrogels upon thermal could accelerate the generation of free radicals to further damage the tumors, achieving the controlled drug release on demand. The designed hydrogel with a sufficient loading capacity, excellent biocompatibility and negligible systemic toxicity could serve as a long-acting implant for NIR-triggered thermo-responsive free radical generation. The in vitro cytotoxicity result and the in vivo antitumor activity illustrated the excellent therapeutic effect of hydrogels even in the absence of oxygen. Therefore, this innovative oxygen-independent platform combining the antitumor effects of PTT and TDT would bring a new insight into hypoxic tumor therapy by the application of alkyl free radical.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。