ZnO-Based Electrochemical Immunosensor to Assess Vaccine-Induced Antibody-Mediated Immunity against Wild-Type and Gamma SARS-CoV-2 Strains

基于 ZnO 的电化学免疫传感器用于评估疫苗诱导的针对野生型和伽马 SARS-CoV-2 毒株的抗体介导免疫力

阅读:13
作者:Freddy A Nunez, Ana C H Castro, Isabela P Daher, Edecio Cunha-Neto, Jorge Kalil, Silvia B Boscardin, Alexandre J C Lanfredi, Vivian L de Oliveira, Wendel A Alves

Abstract

The evaluation of serological responses to COVID-19 is crucial for population-level surveillance, developing new vaccines, and evaluating the efficacy of different immunization programs. Research and development of point-of-care test technologies remain essential to improving immunity assessment, especially for SARS-CoV-2 variants that partially evade vaccine-induced immune responses. In this work, an impedimetric biosensor based on the immobilization of the recombinant trimeric wild-type spike protein (S protein) on zinc oxide nanorods (ZnONRs) was employed for serological evaluation. We successfully assessed its applicability using serum samples from spike-based COVID-19 vaccines: ChAdOx1-S (Oxford-AstraZeneca) and BNT162b2 (Pfizer-BioNTech). Overall, the ZnONRs/ spike-modified electrode displayed accurate results for both vaccines, showing excellent potential as a tool for assessing and monitoring seroprevalence in the population. A refined outcome of this technology was achieved when the ZnO immunosensor was functionalized with the S protein from the P.1 linage (Gamma variant). Serological responses against samples from vaccinated individuals were acquired with excellent performance. Following studies based on traditional serological tests, the ZnONRs/spike immunosensor data reveal that ChAdOx1-S vaccinated individuals present significantly less antibody-mediated immunity against the Gamma variant than the BNT162b2 vaccine, highlighting the great potential of this point-of-care technology for evaluating vaccine-induced humoral immunity against different SARS-CoV-2 strains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。