Enhanced homologous recombination by the modulation of targeting vector ends

通过调节靶向载体末端来增强同源重组

阅读:9
作者:Shinji Hirotsune, Hiroshi Kiyonari, Mingyue Jin, Kanako Kumamoto, Kayo Yoshida, Miki Shinohara, Hitomi Watanabe, Anthony Wynshaw-Boris, Fumio Matsuzaki

Abstract

The field of genome editing was founded on the establishment of methods, such as the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR/Cas) system, used to target DNA double-strand breaks (DSBs). However, the efficiency of genome editing also largely depends on the endogenous cellular repair machinery. Here, we report that the specific modulation of targeting vectors to provide 3' overhangs at both ends increased the efficiency of homology-directed repair (HDR) in embryonic stem cells. We applied the modulated targeting vectors to produce homologous recombinant mice directly by pronuclear injection, but the frequency of HDR was low. Furthermore, we combined our method with the CRISPR/Cas9 system, resulting in a significant increase in HDR frequency. Thus, our HDR-based method, enhanced homologous recombination for genome targeting (eHOT), is a new and powerful method for genome engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。