Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification

离子迁移率得出的碰撞截面作为脂质指纹识别的附加测量方法

阅读:4
作者:Giuseppe Paglia, Peggi Angel, Jonathan P Williams, Keith Richardson, Hernando J Olivos, J Will Thompson, Lochana Menikarachchi, Steven Lai, Callee Walsh, Arthur Moseley, Robert S Plumb, David F Grant, Bernhard O Palsson, James Langridge, Scott Geromanos, Giuseppe Astarita

Abstract

Despite recent advances in analytical and computational chemistry, lipid identification remains a significant challenge in lipidomics. Ion-mobility spectrometry provides an accurate measure of the molecules' rotationally averaged collision cross-section (CCS) in the gas phase and is thus related to ionic shape. Here, we investigate the use of CCS as a highly specific molecular descriptor for identifying lipids in biological samples. Using traveling wave ion mobility mass spectrometry (MS), we measured the CCS values of over 200 lipids within multiple chemical classes. CCS values derived from ion mobility were not affected by instrument settings or chromatographic conditions, and they were highly reproducible on instruments located in independent laboratories (interlaboratory RSD < 3% for 98% of molecules). CCS values were used as additional molecular descriptors to identify brain lipids using a variety of traditional lipidomic approaches. The addition of CCS improved the reproducibility of analysis in a liquid chromatography-MS workflow and maximized the separation of isobaric species and the signal-to-noise ratio in direct-MS analyses (e.g., "shotgun" lipidomics and MS imaging). These results indicate that adding CCS to databases and lipidomics workflows increases the specificity and selectivity of analysis, thus improving the confidence in lipid identification compared to traditional analytical approaches. The CCS/accurate-mass database described here is made publicly available.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。